免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[哲学] 哥德尔不完全性定理

哥德尔是德国著名数学家,不完备性定理是他在1931年提出来的。这一理论使数学基础研究发生了划时代的变化,更是现代逻辑史上很重要的一座里程碑。该定理与塔尔斯基的形式语言的真理论,图灵机和判定问题,被赞誉为现代逻辑科学在哲学方面的三大成果。哥德尔证明了任何一个形式系统,只要包括了简单的初等数论描述,而且是自洽的,它必定包含某些系统内所允许的方法既不能证明真也不能证伪的命题。
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

由来

虽然与悖论打了几千年交道,可数学家们不觉得他们可怕,因为他们与数学无关。直到20世纪,一小部分聪明人才隐约觉察到,在悖论中有着一些深刻的数学理论。
事情要从崇尚理性的文艺复兴时期谈起,当时的学者如笛卡儿、莱布尼茨等都想创造一个理论解决一切问题。莱布尼茨甚至设想把逻辑学用数学符号表示,以后每逢争论,拿支笔一算就见分晓了。事实证明,莱布尼茨的对符号逻辑的建立起了很大作用。
莱布尼茨太超前了,没能完成他的夙愿。又过了200年,著名学者康托尔提出集合论,为统一数学提供了一线希望。
集合论的出现,为近代数学的发展提供了有力的工具。就在数学家踌躇满志的时候,集合论中出现了悖论。康托尔自己就发现了康托尔悖论(包含一切集合的集合是否存在?),更严重的是罗素悖论,其中涉及的是以自己为元素的集合。这被称为“第三次数学危机”。后来这种定义被公理排斥掉了,危机得以解决。
20世纪20年代,在集合论不断发展的基础上,大数学家希尔伯特向全世界的数学家抛出了个宏伟计划,其大意是建立一组公理体系,使一切数学命题原则上都可由此经有限步推定真伪,这叫做公理体系的“完备性”;希尔伯特还要求公理体系保持“独立性”(即所有公理都是互相独立的,使公理系统尽可能的简洁)和“无矛盾性”(即相容性,不能从公理系统导出矛盾)。
值得指出的是,希尔伯特所说的公理不是我们通常认为的公理,而是经过了彻底的形式化。他们存在于一门叫做元数学的分支中。元数学与一般数学理论的关系有点像计算机中应用程序和普通文件的关系。
希尔伯特的计划也确实有一定的进展,几乎全世界的数学家都乐观地看着数学大厦即将竣工。正当一切都越来越明朗之际,突然一声晴天霹雳。1931年,在希尔伯特提出计划不到3年,年轻的哥德尔就使希尔伯特的梦想变成了令人沮丧的噩梦。哥德尔证明:任何无矛盾的公理体系,只要包含初等算术的陈述,则必定存在一个不可判定命题,用这组公理不能判定其真假。也就是说,“无矛盾”和“完备”是不能同时满足的!这便是闻名于世的哥德尔不完全性定理。

TOP

返回列表